[repost ]分布式机器学习的故事
original:http://ift.tt/1mGbx2G 从毕业加入Google开始做分布式机器学习,到后来转战腾讯广告业务,至今已经七年了。我想说说我见到的故事和我自己的实践经历。这段经历给我的感觉是:虽然在验证一个新的并行算法的正确性的时候,我们可以利用现有框架,尽量快速实现,但是任何一个有价值的机器学习思路,都值得拥有自己独特的架构。所以重点在有一个分布式操作系统,方便大家开发自己需要的架构(框架),来支持相应的算法。如果你关注大数据,听完我说的故事,应该会有感触。 大数据和分布式机器学习 特点 说故事之前,先提纲挈领的描述一下我们要解决的问题的特点。我见过的有价值的大规模机器学习系统,基本都有三个特点: 可扩展。可扩展的意思是“投入更多的机器,能处理更大的数据”。而传统的并行计算要的是:“投入更多机器,数据大小不变,计算速度更快”。这是我认识中“大数据”和传统并行计算研究目标不同的地方。如果只是求速度快,那么multicore和GPU会比分布式机器学习的ROI更高。 有一个框架(比如MPI或者MapReduce或者自己设计的),支持fault recovery。Fault recovery是可扩展的基础。现代机群系统都是很多用户公用的,其中任何一个进程都有可能被更高优先级的进程preempted。一个job涉及数千个进程(task processes),十分钟里一个进程都不挂的概率很小。而如果一个进程挂了,其他进程都得重启,那么整个计算任务可能永远都不能完成。 数学模型要根据架构和数据做修改。这里有两个原因: 因为大数据基本都是长尾分布的,而papers里的模型基本都假设数据是指数分布的(想想用SVD做component analysis其实假设了Gaussian distributed,latent Dirichlet allocation假设了multimonial distribution。)。真正能处理大数据的数学模型,都需要能更好的描述长尾数据。否则,模型训练就是忽视长尾,而只关注从“大头”数据部分挖掘“主流”patterns了。 很多机器学习算法(比如MCMC)都不适合并行化。所以往往需要根据模型的特点做一些算法的调整。有时候会是approximation。比如AD-LDA算法是一种并行Gibbs sampling算法,但是只针对LDA模型有效,对其他大部分模型都不收敛,甚至对LDA的很多改进模型也不收敛。 引入更多机器的首要目的不是提升性能,而是能处理更大的数据。用更多的机器,处理同样大小的数据,期待speedup提高——这是传统并行计算要解决的问题——是multicore、SMP、MPP、GPU还是Beowolf cluster上得分布式计算不重要。在大数据情况下,困难点在问题规模大,数据量大。此时,引入更多机器,是期待能处理更大数据,总时间消耗可以不变甚至慢一点。分布式计算把数据和计算都分不到多台机器上,在存储、I/O、通信和计算上都要消除瓶颈。 上述三个特点,会在实践中要求“一个有价值的算法值得也应该有自己独特的框架”。 概念 在开始说故事之前,先正名几个概念:Message Passing和MapReduce是两个有名的并行程序编程范式(paradigm),也就是说,并行程序应该怎么写都有规范了——只需要在预先提供的框架(framework)程序里插入一些代码,就能得到自己的并行程序。Message Passing范式的一个框架叫做MPI。MapReduce范式的框架也叫MapReduce。而MPICH2和Apache Hadoop分别是这MPI和MapReduce两个框架的实现(implementations)。另一个本文会涉及的MapReduce实现是我用C++写的MapReduce Lite。后面还会提到BSP范式,它的一个著名的实现是Google Pregel。 MPI这个框架很灵活,对程序结构几乎没有太多约束,以至于大家有时把MPI称为一组接口(interface)——MPI的I就是interface的意思。 这里,MPICH2和Hadoop都是很大的系统——除了实现框架(允许程序员方便的编程),还实现了资源管理和分配,以及资源调度的功能。这些功能在Google的系统里是分布式操作系统负责的,而Google MapReduce和Pregel都是在分布式操作系统基础上开发的,框架本身的代码量少很多,并且逻辑清晰易于维护。当然Hadoop已经意识到这个问题,现在有了YARN操作系统。(YARN是一个仿照UC Berkeley AMPLab的Mesos做的系统。关于这个“模仿”,又有另一个故事。) 分布式机器学习的故事 pLSA和MPI:大数据的首要目标是“大”而不是“快” 我2007年毕业后加入Google做研究。我们有一个同事叫张栋,他的工作涉及pLSA模型的并行化。这个课题很有价值,因为generalized matrix decomposition实际上是collaborative filtering的generalization,是用户行为分析和文本语义理解的共同基础。几年后的今天,我们都知道这是搜索、推荐和广告这三大互联网平台产品的基础。 当时的思路是用MPI来做并行化。张栋和宿华合作,开发一套基于MPI的并行pLSA系统。MPI是1980年代流行的并行框架,进入到很多大学的课程里,熟悉它的人很多。MPI这个框架提供了很多基本操作:除了点对点的Send, Recv,还有广播Bdcast,甚至还有计算加通信操作,比如AllReduce。 MPI很灵活,描述能力很强。因为MPI对代码结构几乎没有什么限制——任何进程之间可以在任何时候通信——所以很多人不称之为框架,而是称之为“接口”。 但是Google的并行计算环境上没有MPI。当时一位叫白宏杰的工程师将MPICH2移植到了Google的分布式操作系统上。具体的说,是重新实现MPI里的Send, Recv等函数,调用分布式操作系统里基于HTTP RPC的通信API。 MPI的AllReduce操作在很多机器学习系统的开发里都很有用。因为很多并行机器学习系统都是各个进程分别训练模型,然后再合适的时候(比如一个迭代结束的时候)大家对一下各自的结论,达成共识,然后继续迭代。这个“对一下结论,达成共识”的过程,往往可以通过AllReduce来完成。 如果我们关注一下MPI的研究,可以发现曾经有很多论文都在讨论如何高效实现AllReduce操作。比如我2008年的博文里提到一种当时让我们都觉得很聪明的一种算法。这些长年累月的优化,让MPICH2这样的系统的执行效率(runtime efficiency)非常出色。 基于MPI框架开发的pLSA模型虽然效率高,并且可以处理相当大的数据,但是还是不能处理Google当年级别的数据。原因如上节『概念』中所述——MPICH2没有自动错误恢复功能,而且MPI这个框架定义中提供的编程灵活性,让我们很难改进框架,使其具备错误恢复的能力。 具体的说,MPI允许进程之间在任何时刻互相通信。如果一个进程挂了,我们确实可以请分布式操作系统重启之。但是如果要让这个“新生”获取它“前世”的状态,我们就需要让它从初始状态开始执行,接收到其前世曾经收到的所有消息。这就要求所有给“前世”发过消息的进程都被重启。而这些进程都需要接收到他们的“前世”接收到过的所有消息。这种数据依赖的结果就是:所有进程都得重启,那么这个job就得重头做。 一个job哪怕只需要10分钟时间,但是这期间一个进程都不挂的概率很小。只要一个进程挂了,就得重启所有进程,那么这个job就永远也结束不了了。 虽然我们很难让MPI框架做到fault recovery,我们可否让基于MPI的pLSA系统支持fault recovery呢?原则上是可以的——最简易的做法是checkpointing——时不常的把有所进程接收到过的所有消息写入一个分布式文件系统(比如GFS)。或者更直接一点:进程状态和job状态写入GFS。Checkpointing是下文要说到的Pregel框架实现fault [...]
via WordPress http://ift.tt/MQhegD
via WordPress http://ift.tt/MQhegD
Labels: hanhuiwen
0 Comments:
Post a Comment
<< Home